Composite Repair User Group Meeting – September 2013

Simon Frost – Walker Technical Resources
Introduction

Overview on the latest developments in composite repair technology, specifically;

1. ISO standard – latest revision update
2. Quality control during repair application
3. Inspection of composite repairs in service
Major changes - summary

Changes are aimed at making the standard easier to read and apply and tighten up some of the engineering aspects.

1. Scope
 Explanation that standard is not a defect assessment standard. Expectation is that pipeline community will object as within document through wall defects are considered

2. Summary of key issues
 Overview of the key steps in repair application from enquiry stage to inspection in service – where to the sections of the standard fit in relation to the practical situation

3. Design methodology
 Flowchart summarising design process has been added

4. Design temperature effects
 New requirement for glass transition temperature as a function of cure temperature for high criticality lines
Major changes - summary

5. Design equations
 Design equations have been updated to account for Poisson’s ratio where appropriate

6. Axial slot type defect
 Warning statement about limitation of design for long slots

7. Repair thickness increase factors
 Equations have been simplified

8. Testing and inspection
 Allowable defect Tables have been updated along with inclusion of photographs to help defect descriptions
Major changes - summary

9. Installer qualification
 Updated to reflect current practice

10. Design overview
 New Annex to describe assumptions made in the design process

11. Operator perspective
 New Annex summarising expectations of end users from regulators in terms of integrity management
QA/QC

Composite repairs are an engineered solution.

Therefore QA/QC is an integral part of the process in the application of composite repairs

Effective QA/QC ensures that;

- The repair is applied in accordance with the method statement
- The appropriate paperwork is completed for any subsequent audit requirements as part of the overall integrity management strategy
QA/QC

QA/QC controls should always be followed as defined in installation method statement. These include;

- Measurement of surface roughness (e.g. Testex tape)
- Measurement of the actual defect size (may need to include filler size, unprepared surface area)
- Environmental conditions (temperature, humidity etc.)
- Repair laminate lay-up (cloth orientation)
- Repair dimensions (number of layers, thickness, axial extent from edge of defect, taper length)
- Assessment of cure (time, hardness)
Integrity management of composite repairs

The following overview is primarily concerned with safety critical pipework

- The repair should be engineered for a specific design lifetime (note terms temporary and permanent are ambiguous)
- The Operator/Owner should set up a composite repair management system (or be included in a temporary repair register). Information stored should include MCDR, QA/QC documentation (close out repair report)
- At the end of repair lifetime, the component replaced or the repair removed or inspected and re-validated for a further defined life
Inspection of repairs

In general there are 3 parts of a composite repair system that require inspection. These are;

- Substrate internal/external defects underlying the repair
- Delamination at the interface between the composite repair and the substrate
- Defects within the composite repair

Key
1 - substrate, pipe wall
2 - repair laminate
3 - internal laminate defect
4 - interfacial delamination
5 - external defect (with filler)
6 - internal defect
7 - taper of laminate
8 - adhesive fillet
9 - resin rich surface layer
Substrate internal/external defects underlying the repair

- Electromagnetic techniques with a stand off – provides an assessment of the remaining wall thickness e.g. SLOFEC or PEC

- X-rays (digital or photographic) – assess wall loss and size of through wall defect
Interfacial Delaminations

• No existing commercial inspection techniques available as of yet

• Visual inspection at the edge of repair to check for any signs of initiation of delaminations

• There are inspection development initiatives looking into the issue of interfacial delaminations. The following inspection techniques have been trialled with varying degrees of success;

 • Ultrasonics
 • Microwaves
 • Digital X-rays
 • Mechanical impedance meters (electronic coin tapper)
Defects within the composite laminate

Visual inspection is the common form of inspection for defect types within the composite repair. The following table below identifies defect types and their allowable limits;

<table>
<thead>
<tr>
<th>Defect</th>
<th>Allowable limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracks</td>
<td>None that penetrate into the repair laminate</td>
</tr>
<tr>
<td>Pits</td>
<td>Max 25mm diameter and 1.5mm in depth</td>
</tr>
<tr>
<td>Pin holes</td>
<td>None deeper than resin rich layer</td>
</tr>
<tr>
<td>Un-impregnated/dry fibre</td>
<td>None</td>
</tr>
<tr>
<td>Wrinkles</td>
<td>No step changes greater than 20% of the repair laminate design thickness</td>
</tr>
<tr>
<td>Resin colour</td>
<td>Uniform</td>
</tr>
<tr>
<td>Dry spots</td>
<td>None</td>
</tr>
</tbody>
</table>
Inspection Frequency Summary

External corrosion – Visual inspection. If critical then inspection of the pipe substrate on a 2 to 5 year interval

Pressure

- **Internal corrosion**
 - High e.g. Hydrocarbon lines
 - Inspection interval, substrate and repair every 2 years

- **Medium**
 - e.g. Fire water lines
 - Visual inspection, if critical then substrate and repair inspection interval 2 years then every 5 years

- **Low**
 - e.g. Drain lines
 - Limited visual inspection of repair

Consequence