Composite Wrap Repairs: Quality Assurance & Control

Robert E. Rettew, Ph.D.

Composite Repair Users Group Workshop
Houston, TX
September 26, 2013
Outline

- Motivation
- Case Studies
- Chevron Documents
 - Data Sheet
 - Install Checklist
- Qualification
- Manufacturing Traceability
- Training
- Installation
- Documentation
- NDE
Motivation for Composites

- **Advantages:**
 - Composites fulfill a need
 - Decreased Repair Costs
 - Decreased Lost Production

- **Challenges:**
 - Safety – Willingness to Say ‘No’
 - Consistency
 - Traceability
 - Documentation
Basic Requirements for Composites

- **Industry Requirements**
 - Full Documentation Required by Regulators
 - Records are how operators document safe & controlled operation
 - For Operators, PCC-2 alone is not enough

- **Chevron Requirements**
 - System Qualified to PCC-2
 - Chemical Compatibility with Process
 - SP-10 Surface Prep & No Steam Out
 - For Permanent Repairs:
 - 60C Maximum
 - 10,000 hour ASTM D2992 testing
Recent Case Study A:

- **Case A: Internal Corrosion Leak Repair**
 - Emergency repair of sulfuric acid line, no surface preparation or engineered design – leaked within 24 hours
 - Repair was re-wrapped shortly thereafter, but leaked again
 - No documentation or report of installation details (i.e. how many layers)
 - Remediation required much larger repair and eventual cutout

- **What Should Have Happened: Written procedure followed and performance of each step documented**
 - Review and written approval of design and install method documents
 - Documents available for lessons learned and followup decision making should incident occur
Recent Case Study B:

- Case B: Large group of installations on buried pipe
 - Record keeping documents reviewed and approved beforehand
 - After installation, multiple documents were found incomplete:
 - No lead installer name recorded
 - Curing temperature different than that used in qualification
 - Identity of fiber/resin combination not recorded
 - No signatures present in provided signature boxes
 - No failures or technical problems reported, but documentation had to be retroactively corrected

- Key Takeaway: Documenting installation achieves two goals:
 - Record of install remains for customer
 - Ensures the job is done right the first time
 - Safety depends on quality control – analogy to welding
Common Factors

1. Installer deviated from written procedure.

2. Operator accepted deviation.
Recent Case Study C:

- **Case C: Contractor Deviated from Materials List**
 - During installation, contractor used a different bonding material than specified by operator and manufacturer
 - Operator’s representative (third party observer) noticed the mistake and re-wrap was performed
 - Review of documentation indicated that bonding material was not recorded. If engineer had not noticed the difference, deviation would not have been captured

- **Successful Instance of Quality Control**
 - Engineer noticed deviation
 - Success occurred at the **individual**, not at a **system**, level
Goal of data sheets:
- Standardize communication with manufacturers and installers
- Improve consistency of design reviews within Chevron

Goal of install checklist:
- Ensure repeatable quality of installs
- Build a system for traceability of composite wrap repairs

Working Together to Ensure Safe and Traceable Repairs
DATA SHEET FOR COMPOSITE WRAP REPAIR

(To Be Completed By Chevron Representative)

1. GENERAL INFORMATION

<table>
<thead>
<tr>
<th>LOCATION:</th>
<th>LINE/EQUIPMENT NO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION:</td>
<td></td>
</tr>
<tr>
<td>DESIGN BASIS:</td>
<td>ASME B31.1, B31.3, B31.4, B31.8, BPVC Section VIII, Div 1</td>
</tr>
</tbody>
</table>

2. EQUIPMENT DESCRIPTION

<table>
<thead>
<tr>
<th>MAX. DESIGN TEMPERATURE:</th>
<th>MIN. DESIGN TEMPERATURE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F or °C</td>
<td>°F or °C</td>
</tr>
<tr>
<td>DESIGN PRESSURE:</td>
<td>psi or bar</td>
</tr>
<tr>
<td>NOMINAL DIAMETER:</td>
<td>inches or mm</td>
</tr>
<tr>
<td>NOMINAL WT:</td>
<td>inches or mm</td>
</tr>
<tr>
<td>CORROSION ALLOWANCE:</td>
<td>inches or mm</td>
</tr>
<tr>
<td>MATERIAL AND GRADE:</td>
<td></td>
</tr>
<tr>
<td>ATTACH DRAWINGS IF AVAILABLE</td>
<td></td>
</tr>
</tbody>
</table>

| NORMAL OPERATING CONDITIONS: | | |
|------------------------------|-------------------------------|
| °F or °C (MIN) TO °F or °C (MAX) | psi or bar |
| SEALLESS | WELDED |
| BURIED | HEAT TRACED | EXPOSED TO SUNLIGHT |
| COATED (DESCRIBE): | |
| EXPOSED TO IMMERSION CONDITIONS | |

3. DEFECT DESCRIPTION

<table>
<thead>
<tr>
<th>DEFECT TYPE:</th>
<th>ILI LOG DISTANCE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERNAL CORROSION</td>
<td></td>
</tr>
<tr>
<td>DEFECT AXIAL EXTENT:</td>
<td></td>
</tr>
<tr>
<td>DEFECT CIRCUMFERENTIAL EXTENT:</td>
<td></td>
</tr>
<tr>
<td>DEFECT DEPTH:</td>
<td></td>
</tr>
<tr>
<td>DISTANCE TO BEND, FITTING, OR SUPPORT: ft or m</td>
<td></td>
</tr>
<tr>
<td>LOWEST ST REMAINING WALL THICKNESS:</td>
<td></td>
</tr>
<tr>
<td>LIMITED ACCESS TO DEFECT</td>
<td></td>
</tr>
<tr>
<td>CLAMPS OR PLUGS PRESENT</td>
<td></td>
</tr>
<tr>
<td>LOCATED AT/NEAR COMPLEX GEOMETRY (ATTACH PHOTOS)</td>
<td></td>
</tr>
<tr>
<td>ANTICIPATE HOLE THROUGH BEFORE PERMANENT REPAIR (Contact ETC Materials Team)</td>
<td></td>
</tr>
</tbody>
</table>
4. SERVICE DESCRIPTION

DESCRIPTION OF OCCASIONAL EXCURSION CONDITIONS:
- **STEAM OUT (CONTACT ETC)**
- **CRYOGENIC CONDITIONS (CONTACT ETC)**

EXTERNAL LOADS (CONTACT ETC IF ANY APPLY):
- BENDING MOMENT
- CYCLIC LOADING
- AXIAL LOADING
- VIBRATION
- EXTERNAL WEIGHT
- **HIGH ΔT** (Max-Min Temperature Range >70°F or 39°C)

EXTERNAL LOAD DETAILS:

PROCESS HAZARDS:
- SOUR SERVICE
- FIRE PROTECTION REQUIRED
- ASPHYXIA HAZARD

PROCESS COMPOSITION NOTES:

<table>
<thead>
<tr>
<th>5. REPAIR REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPAIR SHALL BE FOR DESIGN PRESSURE AND TEMPERATURE OF EQUIPMENT</td>
</tr>
<tr>
<td>DESIRED REPAIR LIFETIME:</td>
</tr>
<tr>
<td>PCC-2 RISK LEVEL:</td>
</tr>
<tr>
<td>PCC-2 REPAIR TYPE:</td>
</tr>
<tr>
<td>ISO REPAIR CLASS:</td>
</tr>
<tr>
<td>POST-REPAIR HYDROTEST:</td>
</tr>
<tr>
<td>SP-10 SURFACE PREPARATION REQUIRED (CONTACT ETC IF NOT POSSIBLE)</td>
</tr>
</tbody>
</table>

EXPECTED CONDITIONS AT TIME OF INSTALL:
- % REL. HUMIDITY: |
- SURFACE: | DRY | WET (Contact ETC) |
- AMBIENT TEMPERATURE: | |
- OPERATING DURING INSTALL? | Y | N |
- CONTENTS EVACUATED BEFORE INSTALL? | Y | N |
- PROCESS TEMP. DURING INSTALL: | |
- PROCESS PRESS. DURING INSTALL: | |

HOLD: CHEVRON ENGINEER TO APPROVE AND SIGN BEFORE INSTALL

SIGNATURE REQUIRED:

PRINT NAME:

DATE:

© 2013 Chevron USA Inc. All rights reserved. Revised: July 2013
Chevron Installation Worksheet for Composite Wraps

1. GENERAL INFORMATION
- **INSTALLED DATE:**
- **LOCATION/DESCRIPTION:**
- **LINE/EQUIPMENT NO.:**
- **ILI LOG DISTANCE:**
- **VENDOR NAME AND CONTACT INFORMATION:**
- **REPAIR PRODUCT NAME:**
- **CVI REPRESENTATIVE CONTACT INFORMATION:**
- **UNIQUE REPAIR IDENTIFIER:**

2. DESIGN DETAILS
- **DESIGN DOCUMENT ATTACHED:**
- **DO NOT USE:**
- **REPAIR DESIGN PRESSURE:** psi or bar
- **REPAIR DESIGN TEMPERATURE:** °F or °C
- **HARDNESS REMOVED DURING QUALIFICATION:**

3. PRE-INSTALL CHECKLIST
- **HOLD: CHEVRON ENGINEER TO APPROVE DESIGN AND METHOD STATEMENT DOCUMENTS BEFORE INSTALL SIGNATURE REQUIRED:**
- **PRINT NAME:**
- **DATE:**
- **HOLD: CHEVRON REPRESENTATIVE TO VERIFY MATERIALS EXPIRATION AND SURFACE PREP BEFORE INSTALL SIGNATURE REQUIRED:**
- **PRINT NAME:**
- **DATE:**
- **ON-SITE SAFETY DISCUSSION (TAILGATE OR JSA) CONDUCTED BEFORE INSTALL? Y N:**

4. INSTALLATION REPORT
- **LEAD INSTALLER NAME:**
- **CERTIFIED INSTALLER NAME:**
- **EXP. DATE:**
- **CERTIFICATION NO.:**
- **SURFACE PREPARATION METHOD:**
- **CONFIRM: DEFECT DIMENSIONS MATCH DESIGN DOC.**
- **MATERIALS BATCH NUMBER:**

INSTALLATION CONDITIONS:
- **TIME/DATE OF SURFACE PREPARATION:**
- **TIME/DATE WRAP INSTALLATION BEGAN:**
- **TIME/DATE INSTALL COMPLETED:**
- **AMBIENT TEMPERATURE:**
- **HUMIDITY:**
- **PIPE TEMPERATURE DURING INSTALL:**
- **PRESSURE DURING INSTALL:**

POST INSTALL QA/QC
- **MEASURED WRAP THICKNESS:**
- **TOTAL CIRCUMFERENCE:**
- **HARDNESS MEASURED AFTER INSTALLATION:** Shore D or D or Barcol
- **HARDNESS MEASURED IS AT LEAST 90% OF HARDNESS QUALIFIED (COMPARE TO SECTION 2)**
- **REPAIR COATED:**
- **REPAIR FIRE-PROOFED:**
- **REPAIR MARKED WITH UNIQUE IDENTIFIER:**
- **IDENTIFIER DESCRIPTION:**
- **POST-REPAIR HYDROTEST PERFORMED:** psi or bar
- **HOLD: CHEVRON REPRESENTATIVE TO VERIFY POST-INSTALL HARDNESS AND REPAIR DIMENSIONS SIGNATURE REQUIRED:**
- **PRINT NAME:**
- **DATE:**

© 2013 Chevron U.S.A. Inc. All rights reserved.
INSTALLATION WORKSHEET FOR COMPOSITE WRAP REPAIR
(TO BE COMPLETED BY LEAD INSTALLER)

1. GENERAL INFORMATION

<table>
<thead>
<tr>
<th>Installed Date:</th>
<th>Vendor Name and Contact Information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location/Description:</td>
<td>Repair Product Name:</td>
</tr>
<tr>
<td>Line/Equipment No.:</td>
<td>CVR Representative Contact Information:</td>
</tr>
<tr>
<td>ILI Log Distance:</td>
<td>Unique Repair Identifier:</td>
</tr>
</tbody>
</table>

2. DESIGN DETAILS

<table>
<thead>
<tr>
<th>Design Document Attached?</th>
<th>Y</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair Design Pressure:</td>
<td></td>
<td>psi or bar</td>
</tr>
<tr>
<td>Repair Design Temperature:</td>
<td></td>
<td>°F or °C</td>
</tr>
<tr>
<td>Hardness Recorded During Qualification:</td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Layers:</td>
<td>Design Repair Thickness:</td>
<td></td>
</tr>
<tr>
<td>Axial Length of Composite:</td>
<td>Design Life:</td>
<td></td>
</tr>
<tr>
<td>Defect Length and Depth Used in Design:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. PRE-INSTALL CHECKLIST

| Hold: Chevron Engineer to Approve Design and Method Statement Documents Before Install |
| Signature Required: | Print Name: | Date: |

| Hold: Chevron Representative to Verify Materials Expiration and Surface Prep Before Install |
| Signature Required: | Print Name: | Date: |

| On-Site Safety Discussion (Tailgate or JSA) Conducted Before Install? | Y | N |
4. INSTALLATION REPORT

<table>
<thead>
<tr>
<th>LEAD INSTALLER NAME:</th>
<th>SURFACE PREPARATION METHOD:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERTIFIED INSTALLER:</td>
<td>CONFIRM DEFECT DIMENSIONS MATCH DESIGN DOC.</td>
</tr>
<tr>
<td></td>
<td>MATERIALS BATCH NUMBER:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTALLATION CONDITIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME/DATE OF SURFACE PREPARATION:</td>
</tr>
<tr>
<td>TIME/DATE WRAP INSTALLATION BEGAN:</td>
</tr>
<tr>
<td>TIME/DATE INSTALL COMPLETE:</td>
</tr>
<tr>
<td>AMBIENT TEMPERATURE:</td>
</tr>
<tr>
<td>HUMIDITY RECORDED:</td>
</tr>
<tr>
<td>PIPE TEMPERATURE DURING INSTALL:</td>
</tr>
<tr>
<td>PRESSURE DURING INSTALL:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POST INSTALL QA/QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEASURED WRAP THICKNESS:</td>
</tr>
<tr>
<td>TOTAL CIRCUMFERENCE:</td>
</tr>
<tr>
<td>HARDNESS MEASURED AFTER INSTALLATION: Shore D or Barcol</td>
</tr>
<tr>
<td>HARDNESS MEASURED IS AT LEAST 90% OF HARDNESS QUALIFIED (COMPARE TO SECTION 2)</td>
</tr>
<tr>
<td>REPAIR COATED:</td>
</tr>
<tr>
<td>REPAIR FIRE-PROOFED:</td>
</tr>
<tr>
<td>REPAIR MARKED WITH UNIQUE IDENTIFIER:</td>
</tr>
<tr>
<td>IDENTIFIER DESCRIPTION: TLR or LR</td>
</tr>
<tr>
<td>POST-REPAIR HYDROTEST PERFORMED: psi or bar</td>
</tr>
</tbody>
</table>

HOLD: CHEVRON REPRESENTATIVE TO VERIFY POST-INSTALL HARDNESS AND REPAIR DIMENSIONS

SIGNATURE REQUIRED: __________________________ **PRINT NAME:** __________________________ **DATE:** __________
Personnel Training

- **Installer**
 - Trained within past year, with documentation
 - Follows written procedure and records steps taken

- **Supervisor**
 - Experienced installer with 12+ previous installs performed
 - Documented training and installation record available for review
 - Signs off on work procedure and checklists

- **Owner Representative**
 - Aware of company and industry requirements for composites
 - Observes work site, confirms traceability of raw materials
 - Verifies final state of repair in writing
Traceability

- Manufacturer
 - Batch Numbers
 - Expiration Dates
 - Storage Instructions

- End User
 - Record Keeping
 - Marking
 - Tracking & Replacement
Conclusions

- **Reviewed Case Studies**
 - Case A, B: Leak & delays were experienced because of quality control issues on installer and operator’s side
 - Case C: Example of a good ‘catch’ for a quality issue
 - Conclusion: Need to focus on *system-level solutions*

- **Previewed Data Sheets**
 - Internal data sheets assist individual operators
 - Industry standard reporting and documentation will be better

- **Moving Forward:**
 - Training
 - Materials traceability