Provider of world class inspection services

...Inspection and Integrity Management...Non-Destructive Testing...Specialist Inspection Services.
...ACET...Pipeline inspection...Rope Access...Vendor Inspection...

The Microwave Inspection technique and Composite Reinforcements

Donald McNicol
Microwave inspection of non metallic materials

Materials
- Thermoplastics
- Fiberglass piping and patches
- Reinforced and non-reinforced rubber
- Concrete
- Ceramic
- Any other bulk dielectric/composite
Detectable defects

- Delaminations
- Disbonds
- Foreign Material Inclusions
- Voids
- Changes in thickness
- Moisture or liquid contamination
- Mechanical damage
- Physical changes due to chemical attack
Material test pieces are bathed in Microwave Energy of a constant frequency. (Low GHz)

Different dielectric constants reflect varying levels of µW energy to a detector.

The energy level is sampled across the test piece and plotted to create an image.
Principle of operation

Detector output is in Volts

Microwave emitter
Detector A
Detector B
Reflector
• Detector voltage A, B and C (A-B) at an X,Y position
• Amplitude in Gray scale or Color
• Data plot can be manipulated in quasi 3D
Microwave essentials – integrated data acquisition and scanner controller, 24 GHz. microwave probe and ruggedised laptop
Example – Fiberglass pipe coupon

Fiberglass Pipe Coupon

Two Four Inch Pieces of FRP Pipe Connected Via Glued Coupling

Fiberglass Pipe Coupon

Scan Results
(Shown rolled out into flat plane for ease of viewing)
Example – Fiberglass reinforcement

Fiberglass Reinforced O.D. Pipe Patch
Example – Fiberglass reinforcement

Flaw Areas
Poor Substrate Adhesion
Example – “AquaWrap” reinforcement

Reinforcement applied over 4 rectangular air bags (approx 0.005 air gap) First (0.5” x 0.5”) applied to surface at 0 degree, second (1” x 1”) at 90 degrees, third (1” x 1”) obliquely at 180 degrees between layers 2 and 3 and fourth (1” x 1”) obliquely at 270 degrees between layers 6 and 7 of 8.
Example – “AquaWrap” reinforcement

- 0.5” Disbond at surface
- 1” Disbond between layers 2 and 3
- 1” Disbond at surface
- 1” Disbond between layers 6 and 7
Example – GRP to GRP
Example – GRP to GRP
Example – GRP to GRP
It was decided that this sample was not ideal for microwave scanning.
Composite repair test samples

The perfect specimen scanning results

Channel A Channel B Channel C
ISO - Non Destructive Testing

Table 2 NDE selection and acceptance criteria for defects that could potentially occur during operation (Update of Table 5 from ISO 14692 Pt. 4, additions shaded in light blue)

<table>
<thead>
<tr>
<th>Operational defects</th>
<th>Cause(s)</th>
<th>Consequence(s)</th>
<th>Recommended NDE method(s) ISO 14692</th>
<th>Other potential NDE methods</th>
<th>Criteria</th>
<th>Corrective action</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flange cracks, leaks</td>
<td>Bolts over- or under-torqued GRP against raised-face flanges. Wrong GRP flange design selected.</td>
<td>Joint not sealed, leakage. Reduced life</td>
<td>Visual inspection</td>
<td>Ultrasonics. Radiography</td>
<td>No leakage permitted</td>
<td>Replace flange (major defect). Grind and fill minor cracks with resin.</td>
<td>Radiography unlikely to be successful unless well aligned.</td>
</tr>
<tr>
<td>System failure, e.g., burst pipe</td>
<td>Design conditions, loads, temperatures exceeded. Operational procedures inadequate (e.g. water hammer due to valve opening).</td>
<td>System failure</td>
<td>Visual inspection</td>
<td>Monitoring by acoustic emission or leak detection methods</td>
<td>No failure permitted</td>
<td>Replace pipe or system</td>
<td>NDE not likely to be applicable</td>
</tr>
<tr>
<td>Ageing</td>
<td>Long-term materials degradation</td>
<td>Weepage</td>
<td>Ultrasasonics</td>
<td>Ultrasonics, microwave, shearography, acousto-ultrasonics or transient thermography to detect delamination damage associated with ageing or impact.</td>
<td>More than 20 % reduction in original axial modulus</td>
<td>Accept, but monitoring required</td>
<td>Delamination may occur in the latter stages of ageing leading to weepage. Main initial damage mechanism is matrix cracking. Linear scanning UT methods (B-scan, C-scan) more likely to pick up delaminations. Phased array or rapid scanning wheel probes may be considered, given greater speed and quality of visual indication, if GRP quality and surface finish sufficient to allow higher frequencies (1-2.5 MHz).</td>
</tr>
<tr>
<td>Operational defects</td>
<td>Cause(s)</td>
<td>Consequence(s)</td>
<td>Recommended NDE method(s)</td>
<td>Other potential NDE methods</td>
<td>Criteria</td>
<td>Corrective action</td>
<td>Comments</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Ageing (Continued)</td>
<td></td>
<td></td>
<td></td>
<td>Destructive testing and characterisation of condition or NDE using Ultrasonic velocity to measure matrix cracking non-destructively.</td>
<td>In accordance with Table A.1 Visual inspection</td>
<td>Replace (major defect). Temporary repair (minor defect)</td>
<td>Normal practice for life extension is destructive testing using representative samples to compare actual condition with regression curve assumed in design (ISO 14692). NDE methods now developed to measure matrix crack spacing from ultrasonic velocity measurements.</td>
</tr>
<tr>
<td>Impact damage</td>
<td>Impact e.g. from dropped scaffolding, tools</td>
<td>Weepage</td>
<td>Ultrasónics. Visual inspection</td>
<td>Transient thermography, ultrasonics, microwave, shearography or acousto ultrasonics to detect delamination damage associated with impact.</td>
<td>In accordance with Table A.1 Visual inspection</td>
<td>Replace (major defect). Temporary repair (minor defect)</td>
<td>Visual inspection would be normal practice. Thermography can have a good sensitivity to the characteristic features of impact damage (conical damage area, multilayer delamination). Ultrasonic A-scan or phased array can detect damage dependent on surface finish and thickness. Shearography potentially good but expensive.</td>
</tr>
<tr>
<td>Earthing cable damage</td>
<td>Some cables susceptible to corrosion in marine atmosphere</td>
<td>Earthing reduced or eliminated</td>
<td>Visual inspection Mega-ohm meter</td>
<td>None</td>
<td>None permitted</td>
<td>Replace cables</td>
<td>NDE unlikely to be applicable</td>
</tr>
</tbody>
</table>
Microwave can detect and characterise irregularities that cannot be detected by other NDE techniques.

- Inspection speed and cost is comparable with Ultrasonic methods
- No hazardous emissions
- No environmental impact
- Major regulatory body approval in process