A Case Study on the Reinforcement of Seam Anomalies Using Composite Materials

CRUG Conference
September 25, 2015
Topics

- Background
- Historical use of composites
- Research and Testing
- Approvals
- Seam repairs and further validation
- Questions
Background

- 16” diameter, X-52 grade, 0.312” wall thickness, low frequency ERW seam pipeline, manufactured by Youngstown. Pipeline built in 1954.

- MOP = 1,336 psi.

- Pipeline hydrostatically tested in 2001 to validate MOP (1.25xMOP for 8 hours). No hydro failures.

- A second MFL tool run in 2011.

- Pipeline hydrostatically tested a second time in 2013, with a 1.39xMOP spike test for 30 minutes, then held at 1.25xMOP for 8 hours. Two hydro failures found and repaired.

- In 2014, a leak was found by patrol. The leak was in the ERW seam.
Background – 2014 Original Seam Leak
Fractograph showing different colors of deposits on fracture. Scale in inches.
“A” is original flaw.
“B” is crack extension.
“C” is final fracture.
Background – 2015 Second Seam Leak
The original seam leak prompted PHMSA to issue a Corrective Action Order with a pressure restriction.

An Integrity Verification Plan (IVP) was submitted and was approved.

IVP included running CMFL or TFI tools in the pipeline to find seam anomalies. A third hydrotest was not considered to be the best course of action. The line had previously been subjected to two hydrotests.

IVP also included processes and procedures for repair and threat mitigation.

Boardwalk started to look for alternative repair methods to taking the line down for repairs. This is a liquid line, and very costly to evacuate and purge.
Historical Use of Composites

- Composites were mostly used to address corrosion anomalies.

- Composites had been used to reinforce dents.

- Composites were not on the list of the recommended options for repair of seam anomalies (PRCI Pipeline Repair Manual - Table 1).

- To determine if composites can be used to repair seam anomalies, significant research and testing was needed.

- Boardwalk Pipeline invested heavily in this testing effort. Boardwalk operates liquid pipelines with low frequency ERW pipe, and such testing can provide an economical alternative to pipe replacement.
Research and Testing

- Three repair options were selected for testing. Two high modulus composites and one bolt-on clamp.

- Stress Engineering developed the testing protocols using 8” LF ERW pipe samples, as well as actual 16” pipe segments from the subject pipeline.

- EDM Notches were introduced in the seam to simulate a significant anomaly.

- Strain gauges were installed across the EDM notches.

- An unrepaired sample was also burst tested as a baseline.

- Samples were wrapped using the two composite repairs. A carbon fiber system and a carbon steel/E-glass composite system. One sample was repaired using a bolt-on clamp.

- Samples were then burst tested.
Research and Testing – Sample Prep.

16-inch x 0.312-inch, Grade X52 pipe material

Notes:
1. Install three (3) axially-oriented EDM notches (2 inches long x 0.100 inches deep).
2. **ALL notches** interact with ERW weld seam.
3. SES will mark the ERW seam.
4. The PLIDCO sample only had 1 notch. (centered axially).

Flaw depth: 0.094 inches

Cross-sectional profile

Axial view of pipe cross section

Research and Testing – Sample Prep.

Notes:
1. Install three (3) axially-oriented EDM notches (2 inches long x 0.100 inches deep).
2. **ALL notches** interact with ERW weld seam.
3. SES will mark the ERW seam.
4. The PLIDCO sample only had 1 notch. (centered axially).
Strain gauge across EDM notch

2" L, 33% d
Research and Testing – Sample Prep.

ComposiSleeve

Atlas Wrap

Plidco Clamp
Research and Testing - Results

Unreinforced Sample

Wrap 1 – Composi Sleeve

Wrap 2 – Atlas Wrap

Bolt-on Clamp
Research and Testing - Results

<table>
<thead>
<tr>
<th>Repair Type</th>
<th>Pipe Diameter (in)</th>
<th>Sample #</th>
<th>Burst Pressure (psi)</th>
<th>% SMYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreinforced</td>
<td>8</td>
<td>2</td>
<td>2,105</td>
<td>79</td>
</tr>
<tr>
<td>Unreinforced</td>
<td>8</td>
<td>3</td>
<td>2,751</td>
<td>103</td>
</tr>
<tr>
<td>Unreinforced</td>
<td>16</td>
<td>16</td>
<td>2,304</td>
<td>114</td>
</tr>
<tr>
<td>Pipe Wrap - Atlas</td>
<td>8</td>
<td>12</td>
<td>9,096</td>
<td>341</td>
</tr>
<tr>
<td>Pipe Wrap - Atlas</td>
<td>8</td>
<td>13</td>
<td>9,387</td>
<td>352</td>
</tr>
<tr>
<td>Pipe Wrap - Atlas</td>
<td>8</td>
<td>14</td>
<td>9,367</td>
<td>351</td>
</tr>
<tr>
<td>Pipe Wrap - Atlas</td>
<td>16</td>
<td>15</td>
<td>6,440</td>
<td>318</td>
</tr>
<tr>
<td>Western Specialties - ComposiSleeve</td>
<td>8</td>
<td>5</td>
<td>4,995</td>
<td>187</td>
</tr>
<tr>
<td>Western Specialties - ComposiSleeve</td>
<td>8</td>
<td>8</td>
<td>3,979</td>
<td>149</td>
</tr>
<tr>
<td>Western Specialties - ComposiSleeve</td>
<td>8</td>
<td>9</td>
<td>3,084</td>
<td>116</td>
</tr>
<tr>
<td>Western Specialties - ComposiSleeve</td>
<td>16</td>
<td>11</td>
<td>3,478</td>
<td>171</td>
</tr>
<tr>
<td>PLIDCO Clamp</td>
<td>16</td>
<td>-</td>
<td>3,092</td>
<td>152</td>
</tr>
</tbody>
</table>

- All wraps provide significant reinforcement to the seam (which included significant anomalies) > 170% SMYS
- Clamp also provided significant reinforcement to the seam >150% SMYS
- Strain gauges did not register significant opening of the seam anomalies under the composite wraps
Boardwalk ran a CMFL tool to inspect the seam.

The tool identified 84 actionable seam anomalies requiring repair.

19 anomalies were cut out. 36 type B pressure sleeves. 29 composite wraps.

The two most significant anomalies found were selected for further wrap validation testing.

Called 55% deep, 2.63” long

Called 56% deep, 3.33” long
Called 55% deep, 2.63” long seam anomaly
Burst pressure = 3,350 psi – 2.5xMOP - 165% SMYS

Called 56% deep, 3.33” long seam anomaly
Burst pressure = 2,787 psi – 2.1xMOP - 138% SMYS

Research and Testing – Actual Seam Defects
Research and Testing – Actual Seam Defects

WC 21968.24 Post flaw inspection (reinforced; burst failed outside repair)

WC 19904.67 Post flaw inspection (reinforced; burst failed outside repair)
Approvals – Repairs

- Data clearly shows that composite repairs are extremely effective in reinforcing LF ERW seam anomalies.

- No failure occurred during testing under the composites. All failures occurred in the seam or the pipe outside the wrapped areas.

- Composites provide significant reinforcement well above 170% SMYS, and above 135% SMYS on the most severe indication found in this pipeline.

- Boardwalk petitioned PHMSA to allow the use of these two composites for the pipeline in question.

- Provided PHMSA with reports and test results. PHMSA approved the use of these two composites for this pipeline.

- All repairs are now completed and the line returned to service.
Thank you

Questions?