AGEING GRACEFULLY WITH COMPOSITE TECHNOLOGY

Dr Paul Hill CEng
Global Technical Director – Composite Services
GET TO KNOW THE COMPANY
YOU THOUGHT YOU KNEW.
FURMANITE TECHNICAL SOLUTIONS KEY SERVICES

- Front-end engineering & design
- Life-cycle analysis
- Engineering
- Procurement
- Construction management
- Commissioning & start-up
- Project management
- Automation solutions
- Operations & maintenance
- Feasibility studies
- Staffing
FURMANITE INSPECTION
KEY SERVICES

- Traditional & Computed Radiography (RT/CRT)
- Magnetic Particle Testing (MT)
- Penetrant Testing (PT)
- UT Thickness and Flaw Detection
- Tube Inspection (ET/IRIS/RFT/NFT)
- Phased Array (PAUT)
- Time of Flight Diffraction (ToFD)
- Electromagnetic Acoustic Emissions Testing (EMAT)
- Alternating Current Field Measurement (ACFM)
- Long Range UT Testing (Guided Wave)
- API Inspectors (510/570/653)

Integrated Industrial Solutions. Seamless Implementation.
FURMANITE SPECIALITY MECHANICAL KEY SERVICES

- On-Line Leak Sealing
- Composite Repair
- Controlled Bolting
- On-Site Machining
- Heat Treatment
- Weld test & Isolation
- Hot Tapping & Line Stopping
- Valve Repair
- Trevitest
Ageing Gracefully

• Use of composite materials in managing ageing metal structures

• Examples
 – Bridges
 – Tunnels
 – Ships
 – Offshore
The history

• London Underground
 – Tunnel construction started in 1843 (by Marc Brunel and his son, Isambard)
 – First line (Metropolitan) started running in 1863
 – Subsequent development has led to significant changes in loading and access
 • Second photo shows Regent Street, rebuilt between 1895 and 1927
The challenge

• Tunnels built using the latest materials and techniques
 – “Cut and cover” tunnels
 – Cast Iron beams with brick jack arch infill
• Subsequent development has led to significant changes in loading and access
• Some of the structures are now over 160 years old
• This key infrastructure must continue to perform safely
Cast iron

- Cast iron known to be unreliable
 - Strong in compression
 - Weak in tension
 - Early QA - load tests on as-produced beams (up to 45 tonnes) followed collapse of Dee Rail Bridge in 1847 (built by Robert Stephenson, son of George, who is father of modern rail)

- Wrought iron even less suitable
 - Corrosion a longer term problem below ground (and higher cost)

- Blast furnace first patented in 1855 – too late for the tunnels
Performance in Service

• Several beams have fractured but none have collapsed
 – Beams in highest risk locations have been replaced
• Cast iron covered-way roofs below roadways were rebuilt or underpinned in early 1960’s
• Cast iron tunnel roof remain a risk
 – in areas below buildings
 – in areas below footways and open spaces
The challenge

• Covered way roofs below buildings
 – Only accessible from below when trains are not running
 (about 3 hours per night)
 – Need to maintain building support
 – Available space
 • Cast iron beams only just above trains
 • Only space available is in jack arch segmental void

• Can’t lower the track
 – Large sewers pass immediately under tracks
 – Trackside retaining walls undermined (kick in at base unless restrained)
Current Solution

• Steel aerofoil beams
 – Each beam has a mass of 6½ tonnes
 – Loads in cast iron are unknown
 – Concern that installation may overload the cast iron in tension during installation
 – Solution required to strengthen tensile flange of CI beam
Composite Strengthening

- UHM carbon fibre validated as a strengthening option
 - High stiffness vs cast iron (360GPa vs 110-130GPa)
 - Pick up load quickly for small deflections
 - Use tensile strength of carbon and compression strength of cast iron
 - Only thin plates required
Verification

- Extensive test programme completed
- Component and materials scale testing
- Long term properties measured
- Application techniques verified
- Structural monitoring in-situ to confirm performance
Application Development

• Interest from wider industry in reinforcement of older bridge-stock

• Methodology standardised and published (ICE, CIRIA)
 – Wide range of projects completed
 – Pre-stressing techniques developed
 – Few older bridges in Europe post-1945
Other Structural Applications

• Materials also used to manage other cast iron structures
 – Tunnel pans
 – Struts
• Extended application to steel structures
 – Included webs and compression-side of beams
Other Structural Applications

- Blast wall strengthening
- Testing completed to determine:
 - Short term mechanical properties
 - Tension and compression
 - Temperature and strain rate effects
 - Bond strength
 - Surface preparation
 - Temperature and strain rate effects
 - Representative blast tests completed to verify performance
Other Structural Applications

- Wide range of applications for repair of degraded metal structures pioneered using data, design methodology and test results developed
 - Cold work application process
 - Easy to apply and cost-effective
 - Add little extra weight to structure
- For example, Offshore Deck repair (up to 400m²/4000sqft)
Other Structural Applications

• Repair of corroded steel decks in ships
• Cold-work application process meant work could be completed without disrupting other activities
• Programme was compressed, leading to significant cost savings
Other Structural Applications

• Use of composites for crack reinforcement studied
• JIP led by DNV in Norway
• Trial applications of crack repair and deck repair completed on FPSO’s in Europe and Asia
• Performance in line with expectations
Ageing Gracefully

• Composite materials can ensure help ageing structures continue in service

• Plastic surgery that does more than make you look younger!
Acknowledgements

• The work presented was completed with UK Government support (PiT and LINK programmes) in association with:
 – DML Composites
 – MSL Engineering
 – University of Southampton
 – Structural Statics Ltd
 – London Underground
 – QinetiQ