Elements of an Engineering-Based Integrity Management Program

EB-IMP®

Fitness For Service Considerations

Date: September 15, 2016
Julian J. Bedoya, P.E.
Julian.Bedoya@stress.com

Taking on your toughest technical challenges.
Outline of Presentation

• What is Fitness for Service? When is it applicable?
• Introduction to API 579-1 / ASME FFS-1 Standard
• Introduction to the concept of EB-IMP®
• Case Study
 ▪ “Vintage” Girth Weld Repair
What is Fitness For Service?

- Fitness for Service is an approach that has been developed to address equipment that has been placed in service whereby flaws/defects/cracks/damage have been identified.
- Nowadays it is a standard used to aid in the justification of continued operation, repair or replacement of such equipment, whereby its integrity is threatened by in-service deterioration, or newly discovered (fabrication) flaws.
 - Run?
 - Alter?
 - Repair?
 - Monitor?
 - Retire?
 - Replace?
- Ensure the safety of the public
- Ensure consistent results
- Optimize maintenance / operation
- Enhance long-term economic viability of existing facilities
Design Codes vs. FFS

• Design Codes for Pressurized Equipment
 ▪ Provide rules for design, fabrication, inspection, and testing
 ▪ Do not address defects found during inspections
 ▪ Do not address in-service degradation

• API 579-1 / ASME FFS-1 provides procedures for what design codes do not...
 ▪ Flaws, defects, degradation, repairs, etc.
Scope

• Pressure boundary of pressure vessels, boiler components, piping, and shell courses of storage tanks (ASME, API, other codes).

• Addresses both
 ▪ Current integrity
 ▪ Remaining life

• Concepts may be utilized for assessment of non-pressurized equipment.

• Supplements and augments requirements of:
 ▪ API-510 (PV Inspection Code)
 ▪ API-570 (Piping Inspection Code)
 ▪ API-653 (Tank Inspection, Repair, ...)

API 579-1 ASME FFS-1 (2007 and 2016)

- How does API 579-1 relate to Div. 2 and other Codes?

Table 5.5
Load Case Combinations and Load Factors for an Elastic–Plastic Analysis

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Design Conditions</th>
</tr>
</thead>
</table>
| **Global** | (1) $2.4(P + P_L + D)$
 | (2) $2.1(P + P_L + D + T) + 2.7L + 0.86S_L$
 | (3) $2.1(P + P_L + D) + 2.7S_L + (1.7L \text{ or } 0.86W)$
 | (4) $2.1(P + P_L + D) + 1.7W + 1.7L + 0.86S_L$
 | (5) $2.1(P + P_L + D) + 1.7E + 1.7L + 0.34S_L$ |
| **Local** | $1.7(P + P_L + D)$
 | **Serviceability** | Per User’s Design Specification, if applicable; see 5.2.4.3(b) |

<table>
<thead>
<tr>
<th>Hydrostatic Test Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Global and Local</td>
<td>$\max\left[2.3 \cdot 2.0\left(\frac{S}{S_L}\right) \cdot (P + P_L + D) + W_{pe}\right]$</td>
</tr>
<tr>
<td>Serviceability</td>
<td>Per User’s Design Specification, if applicable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pneumatic Test Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Global and Local</td>
<td>$1.8\left(\frac{S}{S}\right) \cdot (P + P_L + D) + W_{pe}$</td>
</tr>
<tr>
<td>Serviceability</td>
<td>Per User’s Design Specification, if applicable</td>
</tr>
</tbody>
</table>

GENERAL NOTES:
(a) The parameters used in the Design Load Combination column are defined in Table 5.2.
(b) See 5.2.4.3 for descriptions of global and serviceability criteria.
API 579-1 / ASME FFS-1 “Fitness-For-Service”

- API Recommended Practice 579, Fitness-For-Service. (Jan. 2000).
- API 579-1/ASME FFS-1 standard is based on and supersedes API RP 579.
 - Published June 2007
Part 1: Introduction

- Quantitative engineering evaluations.
- Performed to demonstrate/check the structural integrity of an in-service component that may contain a flaw or damage.
- Pressurized equipment.
- Goal: **Run-Repair-Replace** decisions.

![Flowchart]

Is it OK?

- Yes
- No
Part 2: FFS Procedure

In each Part, there are three levels of assessment.

A balance between:

- Conservatism
- The amount of information required
- The skill of the analyst
- The complexity of the analysis

- Level 1: Least conservative, easiest to use.
- Level 2: More detailed, more precise.
- Level 3: Most detailed analysis.
General Procedure

1. **Inspection**
 - Identify flaw type
2. **Fabrication**
3. **Design**
4. **Material**
5. **Service history**
6. **Environmental conditions**

Design

- Identify cause of damage

Fabrication

- Environmental conditions

Material

- Service history

Inspection

- Identification of flaw type

Assessment techniques and acceptance criteria

- Remaining life evaluation (limit flaw size => inspection interval)

Remediation

- In-service monitoring

Documentation

- Complex service environments
Integrity Management Overview

• In 2008 SES developed what is known as the “Engineering-Based Integrity Management Program” (EB-IMP®)

• EB-IMP is a 5-step process that permits engineers to use testing, analysis, and field data to make decisions on pipeline integrity

• EB-IMP is based in-part on API 579 (Fitness for Service), but extends the capabilities of this document by adding full-scale testing and developing repair solutions
The EB-IMP® Process

Gather Data

Level I Evaluation (Code)
- NO
- YES: Steps from API 579 / ASME FFS-1

Level II Evaluation (Calculations)
- NO
- YES: Meets requirements

Level III Evaluation (FEA)
- NO
- YES

Fails to Meet Requirements

Level IV Evaluation
- NO
- YES: Use experimental methods to validate previous analysis findings

Level V Evaluation
- NO
- YES: Develop a repair system

Make Repair

No Repair is Required
Case Study – Girth Weld Reinforcement

- Focus is to evaluate the ability of composite materials to reinforce girth welds subject to axial and bending loads
- Full scale test program involving:
 - Vintage welds (intentional defects)
 - Repair using composite materials (PCC-2 as guide)
 - Test loads: Pressure (36% SMYS, constant), axial tension and bending.
- Five (5) composite systems participated
MATR-3-7 Test Plan

1. Purchase pipe material (12.75-inch x 0.188-inch, Gr. X42)
2. Perform material characterization (Chemistry, tensile, and Charpy including properties in exemplar weld)
3. Weld samples with intentional girth weld deficiencies (weld cap only) and threaded end caps
4. Sandblast
5. Install strain gages at select locations
6. Install composite repairs
7. Set-up test fixtures
8. Conduct test and record data
 1. Pressure cycles from 8% to 80% SMYS, 18,000 cycles.
 2. Pressurize sample to 36% SMYS
 3. Apply tension (or bending) loading with holds at specific load levels
 4. Apply tension (or bending) loads to failure
9. Inspect failures including photo documentation region of failure
Reduced Bonding Area Sample

Sample with Mylar packing tape shown (to cover $\frac{1}{2}$ of the pipe’s outer surface)
Configuration for 8-ft Tension Samples

Key Points
1. Surface preparation
2. Length of reinforcement
3. Consistent girth weld fabrication
4. Instrumentation: strain gages beneath and on top of the composite
5. Generate load deflection curves for each manufacturer
Tension to Failure

Tension vs. Axial Strain for 12.75-inch OD x 0.188-inch, Grade X42 Pipe, With a "Cap Only" Girth Weld With 36% SMYS Internal Pressure

- Hybrid Carbon/E-Glass
- Carbon Fiber
- E-Glass

Load (kips)

Axial Microstrain (10,000 Microstrain = 1% Strain)

Unrepaired Sample
Product A - Tape
Product A - No Tape
Product B - Tape
Product B - No Tape
Product D - Tape
Product D - No Tape
Product E - Tape
Product E - No Tape
Defect Free Pipe

AYS = 51.5 ksi
SMYS = 42 ksi
Bending to Failure